COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 - 3:45 Building: Morrill2 Room: 222

Topic 10.4: Introduction to PyTorch
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Note: This presentation covers (and provides additional context/information regarding)
10.5 Introduction to PyTorch.ipynb

Autograd

* Can be slow because it executes Python code.

* |s designhed for differentiating arbitrary code
* |t does not have extra functionality for machine learning

Deep Learning Libraries

* There are many deep learning libraries that extend autograd to:
* Leverage low-level compiled code for faster runtimes.

* Enable forward and backwards passes on the GPU rather than CPU (more
on this later).

* Have built-in implementations of
e Common loss functions
« Common activation functions
* Common network layers
* Fully connected feed-forward
* Convolutional layers
* Pooling layers
* Etc.

Deep Learning Libraries

* PyTorch
* The most commonly used today.
* What we will use in class.

* Tensorflow
* Produced and maintained by Google
* Integrates nicely with Google’s cloud computing platforms
* Steeper learning curve and more verbose syntax

* Keras, Caffe, MXNet, etc.
* Many less popular alternatives

PyTorch

You can install PyTorch with:

I pip install torch torchvision

We will use the following imports:

New to this topic:

import torch

import torch.nn as nn # For defining our neural network model

import torch.optim as optim # For training the model using data

from torch.utils.data import TensorDataset, DatalLoader # For making mini-batches

Defining a Neural Network Architecture
Defining a Parametric Model

e Extend the nn .Module base class

* The base class provides functionality for tracking trainable parameters
(and their gradients), moving parameters to the GPU, saving and loading
models, etc.

* Implement two functions:

* 1nit (self):Define the different layers (number of units, number
of inputs) and different activation functions that will be used.

* forward(self, x):Perform aforward passoninputx.

* You do not need to implement any gradients or the backwards

pass!

* PyTorch uses reverse mode automatic differentiation to automatically
compute gradients.

Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare
runtimes later, and to show a phenomenon called “overfitting”.

class FullyConnectedNetwork(nn.Module):

def init_ (self):
First call the nn.Module constructor to initialize other parts of the model. Always do this first.
super(FullyConnectedNetwork, self). init ()

Define layers. The lines below create the layers (memory is allocated for the weights here).
self.fcl = nn.Linear(9, 1024) # First hidden layer with 1024 neurons and 9 inputs.

self.fc2 = nn.Linear(1024, 512) # Second hidden layer with 512 neurons and 1024 inputs.
self.fc3 = nn.Linear(512, 128) # Third hidden layer with 128 neurons and 512 inputs.

self.fc4 = nn.Linear(128, 1) # Output layer with 1 neuron and 128 inputs.

Define activation functiom: nn.Linear represents a linear
self.relu = nn.ReLU() parametric model with no basis.
def forward(self, x): Tha.t s, 8 perceptron without an
Pass data through the network activation function.

self.relu(self.fcl(x))

self.relu(self.fc2(x))

self.relu(self.fc3(x))

= self.fcd(x) # No activation after the output layer
return x

X X X X #=
I

We can now create an instance of this model:

Create an instance of the network
net = FullyConnectedNetwork()

The network structure is printed as a sanity check
print(net)

FullyConnectedNetwork(
(fcl): Linear(in_features=9, out_features=1024, bias=True)
(fc2): Linear(in_features=1024, out features=512, bias=True)
(fc3): Linear(in_features=512, out features=128, bias=True)
(fc4): Linear(in_features=128, out features=1, bias=True)
(relu): RelLU()

) bias=True indicates that each perceptron includes an extra feature that is always equalto 1 (and
hence one extra weight beyond the number of outputs from the previous layer). This is what we discussed
previously when we talked about appending a 1 to the columns of a data set to implement the “y-
intercept” in linear regression. For perceptrons and neural networks, this extra weight is called the bias.

Next, let's load the GPA data, split it into training and testing, and standardize it.
+ Code + Markdown

df = pd.read_csv("https://people.cs.umass.edu/~pthomas/courses/COMPSCI_389_Spring2024/GPA.csv", delimiter=',")
#df = pd.read csv("data/GPA.csv", delimiter=',")

We already loaded X and y, but do it again as a reminder
X = df.iloc[:, :-1]
y = df.iloc[:, -1]

Split the data into training and testing sets
X_train, X test, y train, y test = train test split(X, y, test size=0.2, shuffle=True)

Standardize the features

scaler = StandardScaler()

X_train = scaler.fit transform(X_train) # This sets the min/max values from the training data (without looking
X_test = scaler.transform(X_test) # This uses the min/max scaling values chosen during training! (transfc

Python

PyTorch has its own objects for storing data, called PyTorch tensors. These are simply multidimensional arrays. Let's
convert our data to these tensor objects. Note that the tensor constructor is not compatible with pandas.Series
objects, so we call y_train.values and y_test.values to convert these to numpy.ndarray objects.

Convert data to PyTorch tensors

X_train_tensor = torch.tensor(X_train, dtype=torch.float32)

y_train_tensor = torch.tensor(y_train.values, dtype=torch.float32).view(-1,1)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)

y _test tensor = torch.tensor(y_test.values, dtype=torch.float32).view(-1,1)

Python

Loss Function
* PyTorch has many built-in loss functions, including MSE:

loss_function = nn.MSELoss()

Optimizer

* PyTorch has many built-in loss optimizers, including gradient
descent (SGD), and Adam (SGD with a specific adaptive step size
method).

* Several optimizers are discussed in the Jupyter notebook.

. . net.parameters
* Adam is the most common, and what we will use. P ¥

contains the weights, and
after backwards passes will
also contain the gradient
information. The optimizer
uses this gradient
information to update the
weights.

optimizer = optim.Adam(net.parameters())

	COMPSCI 389�Introduction to Machine Learning
	Note: This presentation covers (and provides additional context/information regarding)�10.5 Introduction to PyTorch.ipynb
	Autograd
	Deep Learning Libraries
	Deep Learning Libraries
	PyTorch
	Defining a Neural Network Architecture�Defining a Parametric Model
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Loss Function

