
COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 10.4: Introduction to PyTorch
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Note: This presentation covers (and provides additional context/information regarding)
10.5 Introduction to PyTorch.ipynb

Autograd

• Can be slow because it executes Python code.
• Is designed for differentiating arbitrary code

• It does not have extra functionality for machine learning

Deep Learning Libraries

• There are many deep learning libraries that extend autograd to:
• Leverage low-level compiled code for faster runtimes.
• Enable forward and backwards passes on the GPU rather than CPU (more

on this later).
• Have built-in implementations of

• Common loss functions
• Common activation functions
• Common network layers

• Fully connected feed-forward
• Convolutional layers
• Pooling layers
• Etc.

Deep Learning Libraries

• PyTorch
• The most commonly used today.
• What we will use in class.

• Tensorflow
• Produced and maintained by Google
• Integrates nicely with Google’s cloud computing platforms
• Steeper learning curve and more verbose syntax

• Keras, Caffe, MXNet, etc.
• Many less popular alternatives

PyTorch

Defining a Neural Network Architecture
Defining a Parametric Model
• Extend the nn.Module base class

• The base class provides functionality for tracking trainable parameters
(and their gradients), moving parameters to the GPU, saving and loading
models, etc.

• Implement two functions:
• __init__(self): Define the different layers (number of units, number

of inputs) and different activation functions that will be used.
• forward(self, x): Perform a forward pass on input 𝑥𝑥.

• You do not need to implement any gradients or the backwards
pass!

• PyTorch uses reverse mode automatic differentiation to automatically
compute gradients.

Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare
runtimes later, and to show a phenomenon called “overfitting”.

nn.Linear represents a linear
parametric model with no basis.
That is, a perceptron without an
activation function.

bias=True indicates that each perceptron includes an extra feature that is always equal to 1 (and
hence one extra weight beyond the number of outputs from the previous layer). This is what we discussed
previously when we talked about appending a 1 to the columns of a data set to implement the “y-
intercept” in linear regression. For perceptrons and neural networks, this extra weight is called the bias.

Loss Function
• PyTorch has many built-in loss functions, including MSE:

Optimizer
• PyTorch has many built-in loss optimizers, including gradient

descent (SGD), and Adam (SGD with a specific adaptive step size
method).

• Several optimizers are discussed in the Jupyter notebook.
• Adam is the most common, and what we will use. net.parameters()

contains the weights, and
after backwards passes will
also contain the gradient
information. The optimizer
uses this gradient
information to update the
weights.

	COMPSCI 389�Introduction to Machine Learning
	Note: This presentation covers (and provides additional context/information regarding)�10.5 Introduction to PyTorch.ipynb
	Autograd
	Deep Learning Libraries
	Deep Learning Libraries
	PyTorch
	Defining a Neural Network Architecture�Defining a Parametric Model
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Loss Function

